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Multi-focus image fusion algorithm based on shearlets
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Shearlets not only possess all properties that other transforms have, but also are equipped with a rich
mathematical structure similar to wavelets, which are associated to a multi-resolution analysis. Recently,
shearlets have been used in image denoising, sparse image representation, and edge detection. However, its
application in image fusion is still under study. In this letter, we study the feasibility of image fusion using
shearlets. Fusion rules of larger high-frequency coefficients based on regional energy, regional variance,
and absolute value are proposed because shearlet transform can catch detailed information in any scale
and any direction. The fusion accuracy is also further improved by a region consistency check. Several
different experiments are adopted to prove that fusion results based on shearlet transform can acquire
better fusion quality than any other method.
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Image fusion is a process that combines two or more
source images to form a new, sharper, and more credible
image. Using certain algorithms, image fusion produces
a fused image containing the best aspects of the source
images[1]. Multi-focus image fusion is an important part
of fusion research, which can effectively improve the
utilization of image information widely used in image
sensing, computer vision, medical analysis, and so on.
Capturing near and far objects in good focus using only
two or three different focus settings is possible, but ob-
taining a completely clear image is difficult. Hence, we
can acquire a series of pictures with different focus ob-
jects and fuse them into one image. Accordingly, we
present an efficient algorithm for multi-focus image fu-
sion.

Image decomposition is important to image fusion and
affects information extraction quality, even the whole
fusion quality. Wavelet theory has developed since the
beginning of the last century. It was first applied to
signal processing in the 1980s[1]. Over the past decade,
wavelet theory has been recognized as having great po-
tential in image processing applications, as well as in
image fusion[2]. Wavelet transforms are more useful
than Fourier transforms[3], and are more efficient in
dealing with one-dimensional (1D) pointwise smooth
signal. Owing to the limitations of the direction, it
does not perform as well with multidimensional data.
For images containing sharp transitions such as edges,
wavelet transforms are not optimally efficient in repre-
senting them. Recently, a theory for multidimensional
data called multi-scale geometric analysis (MGA) has
been developed. Many new MGA tools have been pro-
posed, such as ridgelet, curvelet, bandelet, contourlet,
etc.[4−6], which provide higher directional sensitivity
than wavelets. Shearlets, a new approach proposed in
2005, not only possess all the above properties, but
also are equipped with a rich mathematical structure
similar to wavelets, which are associated to a multi-
resolution analysis. Shearlets form a tight frame at

various scales and directions, and are optimally sparse in
representing images with edges. Only certain curvelets
are known to satisfy similar sparsity properties. How-
ever, the construction of curvelets is not built directly
in the discrete domain and it does not provide a multi-
resolution representation of the geometry. Shearlet de-
composition is similar to that of contourlets; while the
contourlet transform consists of an application of the
Laplacian pyramid followed by directional filtering, from
the shearlets, the directional filtering is obtained using
a shear matrix. An important advantage of shearlet
transform over contourlet transform is that there is no
restriction on the number of directions for shearing.
Recently, many researchers introduced shearlets into im-
age processing[7−11]. Shearlets have been used in image
denoising, sparse image representation[9,10], and edge
detection[11]. Its applications in image fusion are still
under exploration.

Multi-focus image fusion using shearlets is discussed
in this letter. The theory of shearlets is described, and
image fusion algorithm using shearlets is presented in
detail. Experimental results prove the effectiveness of
the shearlet-based image fusion algorithm.

Fig. 1. Frequency support of shearlets ψj,l,k for different val-
ues of a and s.
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In dimension n = 2, affine systems with composite di-
lations are defined as

AAS(ψ) = {ψj,l,k(x) = |det A|j/2ψ(SlAjx − k)

: j, l ∈ Z, k ∈ Z2}, (1)

where ψ ∈ L2(R2); A and S are both 2×2 invertible ma-
trices, and |det S| = 1. The elements of this system are
called composite wavelet if AAS(ψ) forms a tight frame
for L2(R2): ∑

j,l,k

| < f,ψj,l,k > |2 =
∣∣∣∣f ∣∣∣∣2.

Let A denote the parabolic scaling matrix and S denote
the shear matrix. For each a > 0 and s ∈ R,

A =
(

a 0
0

√
a

)
, S =

(
1 s
0 1

)
.

The matrices described above have special roles in shear-
let transform. The matrix A controls the “scale” of the
shearlets by applying a fine dilation faction along the two
axes. This ensures that frequency support of the shear-
lets becomes increasingly elongated at finer scales. The
matrix S, on the other hand, is not expansive and only
controls the orientation of the shearlets. The frequency
support size of the shearlets is illustrated in Fig. 1 for
some particular values of a and s.

In Ref. [8], it is assumed that a = 4, s = 1, A = A0 is
the anisotropic dilation matrix, and S = S0 is the shear
matrix:

A0 =
(

4 0
0 2

)
, S0 =

(
1 1
0 1

)
.

For ∀ξ = (ξ1, ξ2) ∈ R̂2, ξ1 6= 0, let ψ̂(0)(ξ) be given by

ψ̂(0)(ξ) = ψ̂(0)(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2

(ξ2

ξ1

)
,

where ψ̂1 ∈ C∞(R) is a wavelet and suppψ̂1 ⊂
[− 1

2 ,− 1
16 ] ∪ [ 1

16 , 1
2 ]; ψ̂2 ∈ C∞(R) and suppψ̂2 ⊂ [−1, 1].

This implies that ψ̂(0) ∈ C∞(R) and suppψ̂(0) ⊂
[− 1

2 , 1
2 ]2.

In addition, we assume that

∑
j≥0

|ψ̂1(2−2jω)|2 = 1, |ω| ≥ 1
8
, (2)

and for ∀j ≥ 0

2j−1∑
l=−2j

|ψ̂2(2jω − l)|2 = 1, |ω| ≤ 1. (3)

There are several examples of functions ψ1 and ψ2 sat-
isfying the properties described above. Equations (2) and

Fig. 2. Tiling of the frequency by the shearlets; (b) size of the
frequency support of shearlet ψj,l,k.

(3) imply that

∑
j≥0

2j−1∑
l=−2j

|ψ̂(0)(ξA−j
0 S−l

0 )|2

=
∑
j≥0

2j−1∑
l=−2j

|ψ̂1(2−2jξ1)|2|ψ̂2(2j ξ2

ξ1
− l)|2 = 1,

for any (ξ1, ξ2) ∈ D0, where D0 = {(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥
1
8 , |ξ2| ≤ 1}, the functions {ψ̂(0)(ξA−j

0 S−l
0 )} form a tiling

of D0. This is illustrated in Fig. 2(a). The property
described above implies that the collection {ψ(0)

j,l,k(x) =

2
3j
2 ψ(0)(Sl

0A
j
0x − k) : j ≥ 0,−2j ≤ l ≤ 2j − 1, k ∈ Z2} is

a Parseval frame for L2(D0)∨ = {f ∈ L2(R2) : suppf̂ ⊂
D0}. From the conditions on the support of ψ̂1 and ψ̂2,
one can easily observe that the function ψj,l,k has fre-
quency support,

suppψ̂
(0)
j,k,l ⊂ {(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4]

∪ [22j−4, 22j−1], |ξ2

ξ1
+ l2−j | ≤ 2−j}

That is, each element ψ̂j,l,k is supported on a pair of
trapezoids of approximate size 22j × 2j , oriented along
the lines of slope l2−j (see Fig. 2(b)).

Similarly, we can construct a Parseval frame for
L2(D1)∨, where D1 is the vertical cone,

D1 = {(ξ1, ξ2) ∈ R̂2 : |ξ2| ≥
1
8
, |ξ1

ξ2
| ≤ 1}.

Let A1 =
(

2 0
0 4

)
, S1 =

(
1 0
1 1

)
, and ψ̂(1)(ξ) =

ψ̂(1)(ξ1, ξ2) = ψ̂1(ξ2)ψ̂2( ξ1
ξ2

), where ψ̂1 and ψ̂2 are defined
as Eqs. (2) and (3), respectively. Thus, the Parseval
frame for L2(D1)∨ is as

{ψ(1)
j,l,k(x) = 2

3j
2 ψ(1)(Sl

1A
j
1x − k) :

j ≥ 0,−2j ≤ l ≤ 2j − 1, k ∈ Z2}.

Image decomposition based on shearlet transform is
composed of two parts: multi-direction decomposition
and multi-scale decomposition.

1) The multi-direction part decomposes an image using
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Fig. 3. Image decomposition framework with shearlets.
WPT: wavelet packets transform.

Fig. 4. Image fusion framework based on shearlets.

shear matrix S0 or S1.
2) The multi-scale part decomposes each direction us-

ing wavelet packets decomposition.
In step 1), if the image is decomposed only by S0 or S1,

the number of directions is 2(l + 1) + 1. If the image is
decomposed by both S0 and S1, the number of directions
is 2(l+2)+2. The image decomposition framework with
shearlets is shown in Fig. 3.

The image fusion framework based on shearlets is
shown in Fig. 4. The following steps of image fusion
are adopted.

1) The two images taking part in the fusion are geo-
metrically registered to each other.

2) Transform the original images using shearlets. Both
horizontal and vertical cones are adopted in this method.
The number of directions is 6. Wavelet packets are then
used in multi-scale decomposition with j = 5.

3) The following fusion rules are adopted in this algo-
rithm.

Rule 1: Fusion rule based on pixel level. Low frequency
coefficients of the fused image are replaced by the aver-
age of low frequency coefficients of the two source im-
ages. High frequency coefficients are obtained by select-
ing the corresponding larger absolute value of high fre-
quency coefficients.

Rule 2: Fusion rule based on regional absolute value.
Low frequency coefficients of the fused image are re-
placed by the average of low frequency coefficients of the
two sources images. Compared with the regional absolute
value of high frequency coefficients of the two source im-
ages, high frequency coefficients of the fused image are
obtained by the larger one. Finally, region consistency
check is performed based on the fuse-decision map.

DX(i, j) =
∑

i≤M,j≤N

|YX(i, j)|, X = A,B, (4)

where A and B correspond to the two source images,

Fig. 5. Comparative experiments of fusion rules based on
shearlets. (a) Focus on the left image; (b) focus on the right
image; (c) Rule 1; (d) Rule 2; (e) Rule 3.

Table 1. Comparison of Image Fusion Rules

SP STD EN

Rule 1 24.1629 52.9021 7.4026

Rule 2 23.4875 52.3040 7.4181

Rule 3 23.7856 52.6316 7.5108

respectively. Calculate the absolute value of high fre-
quency coefficients in the neighborhood by Eq. (4),
where M = N = 3. The fused map is shown in

Map(i, j) =

{
1 DA(i, j) ≥ DB(i, j)

0 DA(i, j) < DB(i, j)
. (5)

According to Eq. (5), if a certain pixel is to come from
source image A, but with the majority of its surround-
ing neighbors from B, this pixel will be switched to come
from B.

Rule 3: Fusion rule based on regional variance. Low
frequency coefficients of the fused image are replaced by
the average of low frequency coefficients of the two source
images. Compared with the regional variance of high
frequency coefficients of the two source images, high fre-
quency coefficients of the fused image are obtained by
the larger one.

DX(i, j) =

∑
i≤M,j≤N

[YX(i, j) − ȲX ]2

M × N
, X = A,B. (6)

Calculate the variance of high frequency coefficients
in the neighborhood using Eq. (6), where M = N = 3.
The fused map is shown in Eq. (5). Finally, region con-
sistency check is performed based on the fuse-decision
map.

4) The fused image is obtained using the inverse shear-
let transform.

Subjective visual perception gives us direct compar-
isons. Some objective image quality assessments are also
used to evaluate the performance of the proposed ap-
proach. The following image quality metrics are used in
this letter.
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Fig. 6. Comparative experiments of multi-focus image fusion.
(a) Focus on the left image; (b) focus on the right image;
(c) original image; (d) shearlet; (e) contourlet; (f) Haar; (g)
PCA; (h) Daubechies; (i) LP.

1) Entropy (EN). EN reflects the amount of informa-
tion in the fused image. The larger the EN, the more
information the image carries.

EN = −
255∑
i=0

Pi log2 Pi, (7)

where Pi is the ratio of the number of pixels with gray
value equal to i over the total number of pixels.

2) Difference of entropy (DEN). DEN indicates the
difference between fused image and original image. A
smaller DEN means that there is less difference between
them.

DEN = |ENf − ENo|,

where ENf is the entropy of the fused image and ENo is
the entropy of the original image.

3) Overall cross entropy (OCE). OCE can reflect the
difference between the two source images and the fused
image. The smaller the OCE, the better the fusion re-
sults.

OCE =
CE(fA, f) + CE(fB, f)

2
,

where fA and fB are the two source images, f is the fused
image, and CE is the cross entropy:

CE =
255∑
i=0

PG(i) log |PG(i)
Pf (i)

|,

G = A or B.
4) Standard deviation (STD). STD indicates the dis-

persion degree between gray values and gray mean values.

The larger the STD is, the more dispersed the gray level
is.

STD =

√√√√√N−1∑
i=0

M−1∑
j=1

[
(x, y) − µ

]2

MN
,

where f(x, y) is the pixel value of the fused image, µ and
M × N are the mean value and the size of the fused im-
age, respectively.

5) Sharpness (SP). SP can reflect the small details of
the image. The larger the SP is, the better the fusion
results are.

SP =

∑
x,y

√
[f(x,y)−f(x,y−1)]2+[f(x,y)−f(x−1,y)]2

2

MN
.

6) Mean square error (MSE). MSE indicates the disper-
sion degree between fused image and original image. A
smaller MSE means that there is less difference between
them.

MSE =

√√√√√N−1∑
i=0

M−1∑
j=1

(x, y) − fo(x, y)2

MN
,

where fo(x, y) is the pixel value of the original image.
7) Peak signal-to-noise ratio (PSNR). PSNR can reflect

the quality of reconstruction. The larger the PSNR, the
less the image distortion.

PSNR = 10 × log
( 2552

MSE

)
.

8) Mutual information (MI). MI shows the correlation
of the two images. The larger the MI, the closer the
information between fused image and original image.

MI(f, o) =
ENf + ENo

ENfo
,

where ENf , ENo are the entropies of the fused image and
the original image, ENfo is the joint entropy of the two
images. ENf , ENo, and ENfo can be calculated by Eq.
(6).

The fusion results for comparison of fusion rules are
shown in Fig. 5 and Table 1. Figures 5(a) and (b) are
the images focused on different objects; Figs. 5(c)−(e)
are the fused images with three different fusion rules
described above using shearlet transform. From Fig. 5
and Table 1, high sharpness, standard deviation, and
entropy are achieved regardless of what fusion rule is
adopted. Thus, the problem that different rules cause
quite different fusion results can be avoided by shearlets,
because shearlets have flexible direction features that
can capture the edge information better. Fusing image
using shearlets can not only get a better fused image, but
also facilitate real-time image fusion by choosing lower
computational complexity rules.

Different fusion methods are compared for multi-focus
image fusion. Figures 6(a) and (b) are multi-focus im-
ages, Fig. 6(c) is the original image, Figs. 6(d)−(i)
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Table 2. Comparison of Multi-Focus Image Fusion

MI DEN OCE SP PSNR MSE

Shearlet 6.7133 0.0057 0.0105 18.3345 42.5119 3.2439

Contourlet 6.0162 0.0427 0.0179 18.8710 39.3248 7.1783

Haar 6.0195 0.0180 0.0450 15.5285 31.4873 45.8468

Daubechies 6.0623 0.0176 0.0465 15.0278 31.1822 49.0835

PCA 6.3475 0.0113 0.0484 12.9532 31.1887 49.4549

LP 6.2825 0.0354 0.0179 19.4853 40.3666 5.9761

are the fused images using different methods. Fu-
sion methods used here are shearlets, contourlets, Haar,
Daubechies, principal components analysis (PCA), and
Laplacian pyramid (LP). To compare fusion results un-
der the same condition, and because regional variance is
more useful for multi-focus image fusion, the fusion rule
adopted is Rule 3. The fusion results are shown in Fig.
6 and Table 2. From the subjective evaluation of Fig. 6
and objective metrics of Table 2, we see that image fusion
based on shearlet can better keep the detailed informa-
tion and edge feature than any other method.

In conclusion, we succeed in demonstrating that shear-
lets are very competitive for multi-focus image fusion.
As a novel MGA tool, shearlets have directionality, lo-
calization, anisotropy, and multi-scale features, and are
also equipped with a rich mathematical structure simi-
lar to wavelets, which are associated to a multi-resolution
analysis. Experimental results show that shearlets clearly
contain more detail and smaller distortion information of
the images. They are also useful for real-time fusion and
multi-focus image fusion. Nonetheless, shearlets need
further study, especially in its theory and applications.
We will focus on other image processing methods using
shearlets in our future work.
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